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Abstract
Using the Wang–Landau Monte Carlo method, we study the antiferromagnetic
(AF) three-state Potts model with a staggered polarization field on the square
lattice. We obtain two phase transitions: one belongs to the ferromagnetic
three-state Potts universality class and the other to the Ising universality class.
The phase diagram obtained is quantitatively consistent with the transfer matrix
calculation. The Ising transition in the large nearest-neighbour interaction limit
has been made clear by the detailed analysis of the energy density of states.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Fr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The q-state Potts model is one of the basic models for studying phase transitions [1]. The
properties of the antiferromagnetic (AF) Potts models are more complex than those of
the ferromagnetic (F) ones. The phase transitions of the AF Potts models depend heavily
on the number of states q, the details of lattice structure, etc. The AF three-state (q = 3) Potts
model on a square lattice exhibits a second-order transition at T = 0 with the Gaussian criticality
[2, 3]. While this model with only the nearest-neighbour (NN) interactions has been studied in
detail [2–9], the effect of the next-nearest-neighbour (NNN) interactions has many interesting
problems to explore [4, 10]. Quite recently, the present authors have studied the square-lattice
AF three-state Potts model with a staggered polarization field [10]. By the use of the exact
diagonalization calculation of the transfer matrix and the phenomenological renormalization-
group analysis, two types of phase transitions have been discussed in connection with a field
theoretical argument. The crossover behaviour from the AF to the F three-state Potts criticality,
which was proposed by Delfino [11], has been confirmed.
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Figure 1. Schematic illustration of the AF three-state Potts model with the staggered polarized
field. The sites belonging to the sublattice �+ (�−) are denoted by red thick (black thin) circles.
The NNN interactions on the sublattice �+ (�−) are F (AF). An example of the ground-state
configuration is also given.

The exact diagonalization calculation and the Monte Carlo simulation play a
complementary role in the numerical study. The energy levels obtained by the exact
diagonalization are highly accurate, but the tractable size is limited. On the other hand,
although the statistical errors are unavoidable because of the sampling process, the Monte
Carlo simulation can deal with larger systems. Moreover, the latter can easily study the
spin configuration, the probability distribution of the order parameter, etc. Recently, several
attempts have been proposed for the Monte Carlo algorithms to directly calculate the energy
density of states (DOS), such as the multicanonical method [12, 13] and the Wang–Landau
method [14].

In this paper, we study the square-lattice AF three-state Potts model with a staggered
polarization field by using the Wang–Landau Monte Carlo method. We calculate the energy
DOS precisely and study the phase transitions of the model. Using the finite-size scaling (FSS),
we investigate the critical properties. In section 2, the model and the calculation method are
described. The results for phase transitions are given in section 3. The final section is devoted
to a summary and discussions.

2. Model and calculation method

We treat the AF three-state Potts model with the staggered polarization field on the square
lattice �, whose Hamiltonian is given as

H = J1

∑

〈j,k〉
δσj ,σk

− J2

∑

[j,k]

(−1)j δσj ,σk
. (1)

Here, σj = 0, 1, 2 and J1, J2 > 0. The first sum is performed over the whole NN pairs 〈j, k〉
and the second sum over the whole NNN pairs [j, k]. Here, (−1)j = ±1 for j in the even
(odd) sublattice �±. The second term is the staggered polarization field term, which breaks
the sublattice symmetry. The NN and NNN interactions are schematically shown in figure 1
for convenience. We also give an example of the ground-state configuration there.

In order to obtain precise numerical information, we use the Wang–Landau Monte Carlo
algorithm [14] because of the following reasons. These types of extended ensemble methods
do not suffer from the problem of the critical slowing down near the second-order phase
transitions. The cluster algorithms are not so efficient for the systems with NNN couplings.
We use the information of the energy DOS for the detailed study of the phase transitions. In
the Wang–Landau method, a random walk in energy space is performed with a probability
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proportional to the reciprocal of the DOS, 1/g(E), which results in a flat histogram of energy
distribution. Since the DOS is not known a priori, it is iteratively updated as

ln g(E) → ln g(E) + ln f, (2)

every time a random walker visits a state with energy E. A large modification factor f is
introduced to accelerate the diffusion of the random walk in the early stage of the simulation,
and it is gradually reduced to unity by checking the ‘flatness’ of the energy histogram. We
set the final value of (ln f ) as 10−8 following the original paper by Wang and Landau [14],
and then measure the energy dependence of a quantity Q, that is, Q(E). In measuring Q(E),
the DOS g(E) is fixed as the final one. Finally, we calculate the thermal average 〈Q〉T at the
temperature T using the energy DOS and the Boltzmann weight as

〈Q〉T =
∑

E Q(E)g(E) e−E/T

∑
E g(E) e−E/T

, (3)

where the Boltzmann constant has been included in the definition of T.
We make simulations for several sets of J2/J1; we treat the system sizes N = L × L up

to L = 64. For the energy range of the random walk, we do not cover the whole possible
energy space to save computation time. The lowest energy is taken as the ground-state energy,
E = −J2N , but we set the highest energy as that takes the maximum DOS, in other words,
the energy at the infinite temperature. This energy is (2/3)J1N . We make the measurement
for 4 × 106 Monte Carlo steps per spin after the final energy DOS is obtained using the
Wang–Landau process. We perform 64 independent runs for each system size in order to get
better statistics and to estimate statistical errors. We estimate the statistical errors from 64
independent calculations. They could be underestimated if there are systematic errors due to
the Wang–Landau method.

3. Results

3.1. Specific heat

First, we present the data for the specific heat of the AF three-state Potts model with the
staggered polarization field on the square lattice. We plot the temperature dependence of the
specific heat for J2/J1 = 1/2, 1 and 2 in figure 2. The temperature is denoted in units of
T/J1 from now on unless specified else. The system sizes are L = 16, 24, 32, 48 and 64. The
statistical errors are within the width of lines.

We see two peaks in the specific heat for each J2/J1, which indicates the existence
of two phase transitions clearly. The peak value for the high-temperature phase transition
increases rapidly with the system size, which suggests a positive specific-heat exponent α.
The peak value for the low-temperature transition, in contrast, increases gradually with the
size. It is difficult, however, to determine whether this increase is a logarithmic divergence or
a power-law one with very small α/ν for these system sizes.

3.2. Order parameter

To investigate the behaviour of the phase transitions in more detail, we consider the order
parameters. For high-temperature phase transition, we look at the staggered magnetization for
the AF Potts model, which is given by

M2
s = S2

0 + S2
1 + S2

2 , (4)
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Figure 2. The specific heat of the AF three-state Potts model with the staggered polarization field
for J2/J1 = 1/2, 1 and 2. The temperature is plotted in units of T/J1. The system sizes are L =
16, 24, 32, 48 and 64. The statistical errors are within the width of lines.

where

S� = 1

N

∑

j∈�

(−1)j δσj ,�, � = 0, 1, 2. (5)

The order parameter Ms takes non-zero values if the S3 symmetry associated with the global
permutations of three Potts states is broken. At the ground state of the AF three-state Potts
model with the staggered polarization field, which is shown in figure 1, this order parameter
takes the value of M2

s = 3/8; we should note that the ground state is six-fold degenerate. The
temperature dependence of 〈M2

s 〉 is plotted in figure 3(a). The values of J2/J1 are 1/2, 1 and
2; for each J2/J1, the data for L = 16, 24, 32, 48 and 64 are shown. We see that Ms grows
below the temperature that gives a peak of the specific heat, which indicates that Ms is an
appropriate order parameter for the high-temperature phase transition. The F order develops
on the sublattice �+.

For the quantitative analysis of the phase transition, we use the moment ratio,
〈
M4

s

〉/〈
M2

s

〉2
,

which is essentially the same as the Binder ratio [15]. We plot the moment ratio for the high-
temperature phase transition in figure 3(b). Curves with different sizes cross at a single point
if the corrections to FSS are negligible. The crossings of our data are very good. From the
crossing point, we estimate the critical temperature. We can also estimate the critical exponent
ν by the FSS analysis,

〈
M4

s

〉/〈
M2

s

〉2 = f (tL1/ν), (6)

where t = (T −Tc)/Tc. We show the FSS plot of the moment ratio for J2/J1 = 1, for example,
in figure 4(a). We see a very good FSS. We can also estimate the critical exponent β/ν using
the FSS relation,

〈
M2

s

〉
T =Tc

∼ L−2β/ν. (7)

We tabulate the estimates of Tc, ν and β/ν for the high-temperature phase transition
in table 1. The results for J2/J1 = 1/4 and 4 are also given there. The numbers in the
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Figure 3. The high-temperature order parameter (a) and the ratio of the its moments (b) of
the AF three-state Potts model with the staggered polarization field for J2/J1 = 1/2, 1 and 2. The
temperature is plotted in units of T/J1. The system sizes are L = 16, 24, 32, 48 and 64. The
statistical errors are within the width of lines.

Table 1. The list of Tc, ν, β/ν and moment ratio at T = Tc for two phase transitions. The
temperature is represented in units of T/J1.

J2/J1 Tc ν β/ν Ratio

High temperature
1/4 0.6720(2) 0.83(1) 0.105(4) 1.120(6)
1/2 0.9000(3) 0.83(1) 0.114(4) 1.138(6)
1 1.3150(5) 0.83(1) 0.122(4) 1.148(6)
2 2.1911(5) 0.83(1) 0.126(4) 1.154(6)
4 4.0840(5) 0.82(1) 0.127(4) 1.154(6)

Low temperature
1/4 0.2830(2) 1.00(1) 0.120(4) 1.162(4)
1/2 0.5642(3) 1.01(1) 0.123(4) 1.165(4)
1 1.0657(5) 1.01(1) 0.123(4) 1.164(4)
2 1.8228(5) 0.99(1) 0.125(4) 1.164(4)
4 3.0240(5) 0.98(1) 0.123(4) 1.155(4)

parentheses denote the uncertainty in the last digits. We use the least-square fitting for the
FSS estimates without considering the corrections to FSS. The statistical errors are estimated
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Figure 4. Scaling plot of the moment ratios of the AF three-state Potts model with the staggered
polarization field for J2/J1 = 1. We plot both the high-temperature order parameter (a) and the
low-temperature one (b). The temperature is plotted in units of T/J1. The system sizes are L =
16, 24, 32, 48 and 64.

from 64 independent runs. We see from table 1 that ν is consistent with the F three-state Potts
value of ν = 5/6 = 0.833. We also find that β/ν is compatible with the F three-state Potts
value of β/ν = 2/15 = 0.133. The estimates of the moment ratio at T = Tc are also given in
table 1. This value is consistent with that for the F three-state Potts model, 1.16 ± 0.01 [16].

Here, the corrections to FSS have not been considered explicitly for the estimates of the
critical temperature and critical exponents. The J2/J1 dependences of the estimated critical
exponents and the moment ratio at T = Tc are small, but the deviations from the values for the
F three-state Potts model become larger for small J2/J1. This behaviour is prominent for the
moment ratio at T = Tc, which is more accurate than the critical exponents. This is consistent
with the fact that the system on the sublattice �+ is nothing but the F three-state Potts model
for large J2/J1 limit, which determines the renormalization-group flow [10].

Next consider the low-temperature phase transition. The S3 symmetry is already broken
in the sublattice �+; we should consider the symmetry breaking within the sublattice �−.
Then, we may consider the following quantity as the order parameter for the low-temperature
phase transition:

m2
s = s2

0 + s2
1 + s2

2 , (8)
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Figure 5. The low-temperature order parameter (a) and the ratio of the its moments (b) of
the AF three-state Potts model with the staggered polarization field for J2/J1 = 1/2, 1 and 2. The
temperature is plotted in units of T/J1. The system sizes are L = 16, 24, 32, 48 and 64. The
statistical errors are within the width of lines.

where

s� = 1

N

∑

k∈�−

(−1)kδσk,�, � = 0, 1, 2. (9)

We only look at the spins on the sublattice �−. The sublattice �− forms a
√

2 × √
2

square lattice, and we divide the sublattice �− into two further sublattices. For these further
sublattices, we take (−1)k = ±1 depending on the values of k, even or odd. This order
parameter essentially represents the AF Ising order in the sublattice �−. At the ground state,
the low-temperature order parameter, equation (8), takes the value of m2

s = 1/8.
In figure 5(a), we plot the order parameter of the low-temperature phase transition,

equation (8). This time, ms grows below the temperature that gives a lower peak of the
specific heat; we see that ms is an appropriate order parameter for the low-temperature phase
transition. We can consider the moment ratio associated with the low-temperature order
parameter; Ms will be replaced by ms in equation (6). This moment ratio is plotted in
figure 5(b). Again, we see the crossing of the curves with different sizes. Using the FSS
analysis, we estimate Tc, ν and β/ν, and they are tabulated in table 1. The FSS plot of the
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Figure 6. Phase diagram of the AF three-state Potts model with the staggered polarization field.
The filled circle (red) and filled square (blue) represent the estimates of high-temperature and low-
temperature Tcs in the present Monte Carlo study, whereas the open marks represent those by the
transfer-matrix calculation [10]. The F three-state Potts point (u, v) = (1, (3 − √

3)/2 = 0.6340)

is shown by the double circle and a point with 2D-Ising criticality on the v-axis is shown by the
arrow.

moment ratio for J2/J1 = 1 is given in figure 4(b), for example. The estimated exponents
shown in table 1 suggest that the exponents ν and β/ν are consistent with the two-dimensional
(2D) Ising values, 1 and 1/8 = 0.125, respectively. The moment ratio at T = Tc is also given
in table 1. The Ising value for the finite system with aspect ratio 1:1 is rigorously calculated
as 1.167 9229(47) [17]. The coincidence with this value is very good.

The J2/J1 dependences of the estimated critical exponents and the moment ratio at T = Tc

are very small, but the deviations from the Ising values become slightly larger for large J2/J1,
which is the opposite direction from the case of the high-temperature transition.

3.3. Phase diagram

From the list of the estimates of the two critical temperatures given in table 1 for J2/J1 =
1/4, 1/2, 1, 2 and 4, we discuss the phase diagram. In figure 6, we plot the phase diagram
in the parameter space of (u, v) = (e−J1/T , 1 − e−J2/T ), which is the same as the previous
transfer-matrix study [10]. The trajectories of J2/J1 = 1/4, 1/2, 1, 2 and 4 are shown by dotted
curves starting from T = 0 ((u, v) = (0, 1)) to T = ∞ ((u, v) = (1, 0)). The filled circle
(red) and filled square (blue) represent the estimates of high-temperature and low-temperature
Tcs in the present study, respectively, and they are compared with the previous estimates by
the transfer-matrix calculation [10], which are given by open marks. These two results are
consistent with each other, which shows the reliability of both calculations. In the transfer-
matrix calculation [10], the characterization of the excitation levels was important. In the
present MC simulation, we have employed the method to calculate the DOS accurately and
have made the appropriate choice of the order parameters. With these careful treatments, we
have obtained the accurate enough phase diagram.



Monte Carlo study of the antiferromagnetic three-state Potts model 9101

−1 0                                    1

0

0.5

1
0

0.25

0.5

ln
 g

(E
)/

N

L=8
L=16
L=32

(a)

ga(E)

gb(E)

(E/J2)/N

g b
(E

)/
g a

(E
) (b)

Figure 7. (a) The energy DOS of the AF three-state Potts model with the staggered polarization
field in the subspace of the ground states of the NN AF three-state Potts model, ga(E), and that
of the pure Ising model, gb(E). The critical energy of the Ising transition point, (E/J2)/N =
−(2 +

√
2)/4 = −0.8536, is shown by an arrow. (b) The ratio of two DOSs, gb(E)/ga(E).

From the behaviour of the corrections, we can see the renormalization-group flow of the
phase boundary, which is consistent with Zamolodchikov’s c-theorem [18]. For the high-
temperature phase transition, the flow starts from the Gaussian point (u, v) = (0, 0) to the
F three-state Potts point (u, v) = (1, (3 − √

3)/2 = 0.6340), which is shown by the double
circle. On the other hand, for the low-temperature phase transition, the flow starts from
another Gaussian point (u, v) = (1, 1) to a point with 2D-Ising criticality on the v-axis, which
is shown by the arrow in figure 6.

This Ising transition in the large J1 limit (on the v-axis) is a subtle problem. In [10], the
inverse critical temperature was estimated as J2/Tc = 0.8820, which is slightly larger than the
Ising value of ln(

√
2 + 1) = 0.8814 (v = 1 − e−J2/T = 2 − √

2 = 0.5858).

3.4. Large NN interaction limit

Here we examine the Ising transition in the large J1 limit. If we consider only the NN
interaction term in equation (1), the energies of the ground states and the first excited states are
0 and J1, respectively. The NNN interaction term takes the energy between −J2N and J2N .
Thus, for the case of J2/J1 � 1/(2N), we have to consider only the ground-state configuration
for NN interactions. We make a Wang–Landau type MC simulation for our model with this
restriction. That is, only the ground-state configurations for the NN AF three-state Potts model
are allowed, and we calculate the energy DOS for the NNN interactions.

In figure 7(a), we plot the DOS for this restricted model in the subspace of the ground
states of the NN AF three-state Potts model, ga(E). If all the spins on the sublattice �+ take
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Figure 8. Comparison of the specific heat between that for the present model in the subspace
of the ground states of the NN AF three-state Potts model (solid line) and that for the pure Ising
model (dotted line).

one of the three states (the complete F three-state Potts order) and the spins on the sublattice
�− take either one of the other two states, these spin configurations are parts of the ground
states of the NN AF three-state Potts model and are called the broken-sublattice-symmetry
states in the study of the AF Potts models [19]. Then, the spins on the

√
2 × √

2 sublattice
�− are regarded as the AF Ising model with the NN interactions. The energy DOS of this
pure Ising model, gb(E), is also shown in figure 7(a). The extra three-times degeneracy due
to three complete F states in the sublattice �+ was taken into account. The phase transition
is determined by the structure of the energy DOS near the Ising critical energy, (E/J2)/N =
−(2 +

√
2)/4 = −0.8536, which is shown by an arrow in figure 7. In this region, two

DOSs look close when the logarithmic scale is used. However, we understand the very
small difference in the critical temperature from the structure of DOS. We plot the ratio of
gb(E)/ga(E) in figure 7(b). Then, we find that this ratio becomes smaller for larger system
size L. This means that we cannot ignore contributions from the spin configurations which are
not the pure Ising one. Therefore, we may conclude that although this transition belongs to the
Ising universality class, the critical temperature, which is not a universal quantity, is slightly
modified from that of the pure Ising model. Since the number of configurations is larger than
that for the pure Ising model, the critical temperature Tc/J2 becomes slightly lower than that
for the pure Ising model. In figure 8, we compare the specific heat calculated from two DOSs,
which give almost the same behaviour but there is still a small difference.

In the MC method to calculate DOS, we obtain the relative ratio of DOSs at different
energies E1 and E2, g(E1)/g(E2). The absolute value of g(E) can be obtained with other
conditions. For the Ising model, as an example, the equation to give the total number of
states,

∑
E g(E) = 2N , is such a condition. There is also a boundary condition if the ground-

state degeneracy is known. The ground state of the present model is six-fold degenerate;
thus, g(E = −J2N) = 6. Then, with this condition we can calculate the total number of
states,

∑
E g(E). This value is nothing but the ground-state degeneracy for the NN AF three-

state Potts model, because we restrict ourselves to the subspace of the ground states of the
AF three-state Potts model. To confirm the reliability of our calculation, we calculate the
normalized ground-state entropy of the AF three-state Potts model, S/N = [ln

∑
E g(E)]/N ,

as a function of L with this procedure, S(1)/N , and they are tabulated in table 2. A more
direct way of obtaining the ground-state entropy is to calculate the ground-state DOS of the
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Table 2. The estimate of the residual entropy per spin of the AF three-state Potts model on the
square lattice. Two procedures are employed to calculate S/N . (1) The total number of states for
the subspace of the ground states of the AF three-state Potts model is calculated. (2) The direct
way to calculate the ground-state DOS of the three-state Potts model is used with the condition of∑

E g(E) = 3N .

L S(1)/N S(2)/N

16 0.435 69(8) 0.435 75(11)
24 0.433 45(6) 0.433 53(7)
32 0.432 59(4) 0.432 62(9)
48 0.431 98(3) 0.432 02(15)
64 0.431 76(5) 0.431 85(10)

three-state Potts model with the condition of
∑

E g(E) = 3N . This procedure was employed
in the study of the three-dimensional AF Potts models [20]. The result of this direct way,
S(2)/N , is also tabulated in table 2. These two results coincide with each other completely.
This indicates the effectiveness of the treatment of this subsection, that is, we have applied the
Wang–Landau method to the present model with the restricted configurations. The normalized
ground-state entropy for the AF three-state Potts model on the square lattice is exactly known
as ln(4/3)3/2 = 0.431 523 for the infinite size limit [21]. The extrapolation of the data of S/N

shown in table 2 as a polynomial of 1/N yields 0.431 54 + 1.10 × (1/N), which is consistent
with the exact value within the statistical errors. We should mention that the ground-state
entropy of the AF Potts model was extensively studied numerically by Shrock and Tsai [22].

4. Summary and discussions

We have studied the square-lattice AF three-state Potts model with a staggered polarization
field using the Wang–Landau MC method. We have obtained two phase transitions, which
belong to the ferromagnetic three-state Potts and Ising universality classes. We have confirmed
the quantitative consistency of the phase diagram with the transfer-matrix study [10]. This
consistency shows the reliability of both calculations, the previous transfer-matrix calculation
and the present MC study. A special attention has been paid to the Ising transition in the large
J1 limit. The origin of the slight difference of the transition point from the value of the pure
Ising model has been made clear by the detailed analysis of the energy DOS. As a check of
the method, we have calculated the ground-state residual entropy for the AF three-state Potts
model by two ways.

The specific heat has singularities at the critical points as shown in figure 2. The specific-
heat amplitudes have information on the crossover behaviour [23]. We can study the Gaussian
to F three-state Potts and the Gaussian to Ising crossovers by the J2/J1 dependence of the
specific-heat amplitudes. The detailed study on this crossover will be left to a separate study.

We here make comments on the Wang–Landau method. In calculating the thermal average
of Ms and ms, we have used the microcanonical average Ms(E) and ms(E) as in equation (3).
If the energy DOS g(E) is not converged enough, it may cause a systematic error in calculating
the thermal average. The use of the joint DOS g(E,Q) may help the convergence. We have
checked for smaller system sizes that the present calculations with the microcanonical average
and those using the joint DOS give the same results within the statistical errors. The second
comment is as follows. We may employ a random walk in the space of two parameters,∑

〈j,k〉 δσj ,σk
and

∑
[j,k](−1)j δσj ,σk

, instead of the single parameter of the total energy E. Then,
we can get all the information for different J2/J1 from the result of a single simulation.
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Actually, for smaller system sizes (L � 16), the two-parameter random walk method works
well. However, simulations with fixed J1 and J2 are more effective for larger sizes.

In this paper, we have considered the staggered polarization field for the NNN interaction.
The effect of the F NNN interaction is also interesting. In this case, the system has the
same universality class as the six-state clock model, which yields two Berezinskii–Kosterlitz–
Thouless transitions [24, 25]. The precise calculation of this problem has been quite recently
performed by using the level-spectroscopy method [26] based on the exact diagonalization
of the transfer matrix [27]. A complementary study of the AF Potts model with the F NNN
interaction using the Monte Carlo method is highly needed, and this research is now in
progress.
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